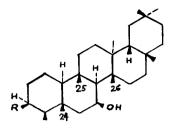
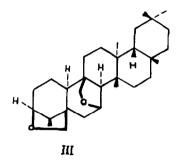
FUNCTIONALISATION OF 25-METHYL GROUP OF D.A-FRIEDOOLEANAMES

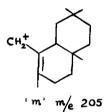
P. Sengupta^{*}, (Miss) Manju Sen and (Miss) Swapna Sengupta Organic Chemistry Laboratory, University of Kalyani Kalyani, Madia, West Bengal, India

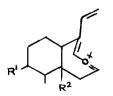
and

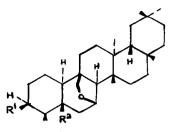

K.G. Das

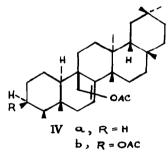
Mass Spectrometry Group, National Chemical Laboratory Poona, India

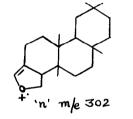

(Received in UK 23 September 1974; accepted for publication 17 October 1974)

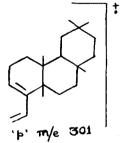

Although a number of triterpenoids of D:A-friedcoleanane group with oxygen function at C-25 have been isolated and their structures suggested¹⁻⁵, direct correlation with a triterpene of known structure and configuration has not been possible yet for the lack of a suitable method for introducing an oxygen function at C-25 methyl group. The present communication describes the first successful method for the functionalisation of the C-25 methyl group from known precursors friedcolean-76-ol (Ia)⁶⁻⁸ and 36-acetoxy friedcolean-76-ol (Ib)⁶⁻⁸.


The axial 7β -hydroxyl group in both Ia and Ib suffers from severe 1,3-diaxial interaction by three methyl groups at C-24, C-25 and C-26, and hence it was suspected that hypohalite oxidation⁹ might effect functionalisation of any or all of the three methyl groups. Irradiation of a mixture of Ib, lead tetraacetate, iodine and calcium carbonate in cyclohexane for 3.5 hrs with a 500 watt tungsten lamp furnished a gummy mixture which could be resolved into three components on chromatography over alumina. The least polar fraction (5%), m.p. 274-276° was identified as <u>epi-friedelanol acetate</u> (I.R., TLC and mixed mp), presumably formed by


1 a, R≃H b, R=OAC






 $^{\circ}O' R^{1}=H, R^{\frac{1}{2}}CH_{8}, m/e 205$ $R'=OAC, R^{\frac{1}{2}}CH_{8}, m/e 263$ $R'=OAC, R^{2}=CH_{2}I_{3}m/e 389$

II a, $R^{I} = H$, $R^{2} = CH_{3}$ b, $R^1 = OAC$, $R^2 = CH_3$ C, $R^1 = OAC$, $R^2 = CH_2I$

hydrogen radical exchange with cyclohexane.

The second component $C_{32}H_{52}O_3$ to come out of the column, m.p. 215-218°, (α)_D + 44.7° (50%), M⁺ 484, <u>IR</u> 1740, 1250 (acetate) and 842 and 850 cm⁻¹ (ether); <u>MMR</u>: 0.85 (3H, d, J=4 Hz), 0.99 (3H, s), 1.05 (3H, s), 1.09 (3H, s), 1.12 (3H, s), 1.30 (3H, s) and 1.39 (3H, s) for one secondary and six tertiary methyl groups; 2.02 (3H, s, -CO.CH₃); AB quartet at 3.49 and 3.78 (2H, J=4 Hz, -CH₂-0- at C-25); 4.29 (1H, m, H at C-7) and 4.92 (1H, m, H at C-3) was attributed structure (IIb) on the basis of these data coupled with mass spectrometric fragmentation pattern described below.

The most polar component, $C_{32}H_{51}O_{3}I$, m.p. 123-125° contained iodine and was attributed structure (IIc), <u>IR</u> 1725, 1230 (acetate) and 842 (ether); <u>NMR</u> six methyl signals in the region 0.88 to 1.2, 2.18 (3H, s, -CO.CH₃), 2.64 and 2.84 (2H, AB quartet, J=4 Hz, shielded O-CH₂-), 3.62 (2H, s, -CH₂.I), 4.25 (2H, broad m, overlapped C-7 and C-3 H). On treatment with LiAlH₄ IIc afforded the diether (III), $C_{30}H_{48}O_2$, m.p. 221-225°, M⁺ 440, <u>IR</u> no acetate peak, peak at 850 cm⁻¹ (ether), <u>NMR</u> six methyl signals in the region 0.82 to 1.28; 3.42 and 3.61 (2H, AB quartet, J=2 Hz, -O-CH₂- at C-25), 3.84 (2H, broad, -O-C₁₂- at C-24), 4.09 -4.52 (2H, m, overlapped C-7 and C-3 H).

Similar irradiation of Ia in presence of lead tetracetate and iodine furnished after chromatography only two products. The less polar component (10%) was friedelane, m.p. 245-246°. The more polar component (60%), $C_{30}H_{50}O$, m.p. 204-206°, K⁺ 426, <u>IR</u> 840 and 850 cm⁻¹ (ether) was attributed structure (IIa) on the basis of mass spectral data.

The mass spectra¹⁰ of each of IIa, IIb and IIc showed a peak at m/e 205 corresponding to the ion 'm', thus demonstrating that the 0-26 methyl group had not been affected, A peak at m/e 302 from each of IIa,

IIb and IIc corresponded to ion 'n'^{ll} and definitely established that functionalisation had taken place at C-25. This conclusion was further supported by the appearance of a peak at m/e 205 from IIa, at m/e 263 from IIb and at m/e 389 from IIc corresponding to the ion '0'.

IIb on mild treatment with BF_3 -etherate in acetic anhydride gave the en-acetate (IVb), $C_{34}H_{54}O_4$, m.p. 160-162°, M⁺ 526, MMR 2.0 (6H, s, -CO.CH₃ at C-3 and C-25), 4.84 (1H, broad, -C=C-H at C-7). Similar treatment of IIa furnished IVa, m.p. 122-126°, M⁺ 468. The mass spectra of each of IVa and IVb gave a prominent peak at m/e 301 corresponding to the ion 'p' formed by RDA cleavage followed by elimination of -CH₂.0Ac.

All the compounds gave fairly good C,H-analytical data.

<u>Acknowledgement</u>: The authors are indebted to the Council of Scientific and Industrial Research for awarding a Junior Research Fellowship to one of them (S.S.).

REFERENCES

1.	J.L. Courtney and R.M. Gascoigne, J. Chem. Soc. 2115 (1956).
2.	J.L. Courtney, R.M. Gascoigne and A.Z. Ssumer J. Chem. Soc. 2119 (1956).
3.	J.S. Shannon, C.M. Macdonald and J.L. Courtney, <u>Tetrahedron</u> Letters 173 (1963).
4.	J.L. Courtney and W. Stern, Tetrahedron Letters 1607 (1965).
5.	H.S. Garg and C.R. Mitra, Phytochem. 10, 865 (1971).
6.	P. Sengupta, A.K. Chakraborty, A.M. Duffield, L.J. Durham and C. Djerassi, <u>Tetrahedron</u> 24, 1205 (1968).
7.	P. Sengupta and J. Mukherjee, Tetrahedron 24, 6259 (1968).
8.	P. Sengupta, <u>J. Indian Chem. Soc</u> . <u>51</u> , 131 (1974).
9.	K. Heusler and J. Kalvoda in 'Organic Reaction in Steroid Chemistry' Vol.II, Ed. J. Fried and J.A. Edwards, Van Nostrand, p. 237 (1972).
10.	For the mass spectra of friedelanes see ref. 3 and 6 above and J.L. Courtney and J.S. Shannon, <u>Tetrahedron Letters</u> 13 (1963).
11.	See E. Fujita, T. Fujita and Y. Nagao, Tetrahedron 28, 555 (1972).